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SUMMARY

An efficient, stability-preserving model reduction technique for non-linear initial boundary value problems
whose solutions exhibit inherently non-linear dynamics such as metastability and periodic regimes (limit
cycles) is developed. The approach is based on the ‘continuous’ Galerkin projection approach in which the
continuous governing equations are projected onto the reduced basis modes in a continuous inner product.
The reduced order model (ROM) basis is constructed via a proper orthogonal decomposition (POD). In gen-
eral, POD basis modes will not satisfy the boundary conditions of the problem. A weak implementation of
the boundary conditions in the ROM based on the penalty method is developed. Asymptotic stability of the
ROM with penalty-enforced boundary conditions is examined using the energy method, following lineariza-
tion and localization of the governing equations in the vicinity of a stable steady solution. This analysis,
enabled by the fact that a continuous representation of the reduced basis is employed, leads to a model
reduction method with an a priori stability guarantee. The approach is applied to two non-linear problems:
the Allen–Cahn (or ‘bistable’) equation and a convection-diffusion-reaction system representing a tubular
reactor. For each of these problems, bounds on the penalty parameters that ensure asymptotic stability of
the ROM solutions are derived. The non-linear terms in the equations are handled efficiently using the ‘best
points’ interpolation method proposed recently by Peraire, Nguyen et al. Numerical experiments reveal
that the POD/Galerkin ROMs with stability-preserving penalty boundary treatment for the two problems
considered, both without as well as with interpolation, remain stable in a way that is consistent with the
solutions to the governing continuous equations and capture the correct non-linear dynamics exhibited by
the exact solutions to these problems. Published 2012. This article is a US Government work and is in the
public domain in the USA.
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1. INTRODUCTION

Many mathematical models in engineering and science applications are described by non-linear
partial differential equations (PDEs) whose solutions exhibit inherently non-linear behavior, includ-
ing static equilibria, transient steady states, periodic or quasi-periodic time-asymptotic regimes,
and chaotic oscillations. It is well-known that non-linear equations can be very sensitive to initial
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conditions and parameters appearing in these equations: a slight perturbation of operating conditions
can cause the solution of the PDE to change dramatically. The proper characterization of all such
solution states becomes particularly important in non-linear control systems applications in which
one may be interested in fine-tuning a system parameter, or input, to yield a particular state or con-
figuration of the governing system. Although investigation of stability and sensitivity of non-linear
systems can sometimes be carried out analytically using techniques from non-linear analysis [1, 2],
numerical bifurcation techniques are required in general. Packages and tools [3] for performing such
bifurcation analyses are available; however, these tools are often too computationally expensive for
use in a design or analysis setting.

The cost associated with the analysis of non-linear equations has pushed researchers in math-
ematics and engineering applications to seek modeling and simulation techniques that retain the
essential dynamics of a high-fidelity model but at a much lower computational cost. The basic idea
of these ‘reduced order models’ (ROMs) is to use a relatively small number of solutions generated
by a high-fidelity simulation to construct a model that is much cheaper computationally and can be
run in real or near-real time. A ROM to be used in predictive, real-time applications is desired to
have the following properties:

(i) Stability: the ROM should be constructed such that it can be ensured a priori that the dis-
cretization does not introduce into the approximation any non-physical numerical instabilities
inconsistent with any physical instabilities exhibited by the exact solutions to the equations
being solved, and

(ii) Efficiency: the non-linear terms in the ROM should be handled in a way that does not invalidate
the label reduced order model.

Many non-linear ROM techniques are derived from the proper orthogonal decomposition
(POD)/Galerkin projection approach [4–6]. Non-linear POD/Galerkin ROMs have been constructed
in a number of applications. An analytical technique based on the POD method and Galerkin projec-
tion was presented for the analysis and characterization of inter-area oscillations in stressed power
systems in [7]. Dynamical models for bifurcation analysis and control of self-sustained cavity oscil-
lations, also based on the POD/Galerkin approach, were examined by Rowley et al. in [8, 9]. In
[10], Bizon et al. investigated features and limitations of POD models for different snapshot sam-
pling policies for a tubular reactor with recycle. In [11], Agudelo et al. presented an application
of positive polynomials to the reduction of the number of temperature constraints of a POD-based
predictive controller of a similar tubular reactor.

The aim of the present work is to develop an efficient, asymptotically stable model reduction
approach based on the POD/Galerkin projection for non-linear PDEs exhibiting complex non-linear
dynamics, such as metastability (stable or unstable fixed points that coalesce or vanish on a long
time scale) and periodic, oscillatory regimes (limit cycles). The proposed model reduction technique
is based on the ‘continuous projection’ approach: the continuous, governing PDEs are projected
onto the basis modes in a continuous inner product, in common with the perspective of [12–17].
This approach is fundamentally different from a popular approach, termed the ‘discrete projection’
approach, in which the semi-discrete representation of the governing equations is projected onto a
set of discrete modes in a discrete inner product. The primary advantage of the continuous projection
approach is that it allows the use of numerical analysis techniques employed by the spectral meth-
ods community [18,19] to determine, a priori, the stability and convergence properties of the ROM.
By using these techniques, a ROM based on the continuous projection approach can be derived
to possess, by construction, a certain stability guarantee. As shown in [12–15], the stability of the
Galerkin projection step of the model reduction procedure can be closely tied to the choice of inner
product and the formulation and implementation of the boundary conditions, which are not necessar-
ily inherited from the discretized equation set by a ROM constructed using the continuous Galerkin
projection approach. For non-linear equations, the energy method can be applied to the linearized,
constant coefficient version of the continuous problem in order to obtain energy inequalities that
bound the temporal growth of the solutions to the initial boundary value problem (IBVP) in regions
where the exact solutions to these equations are asymptotically stable [19, 20]. This analysis allows
one to identify a priori if a particular choice of inner product is the ‘correct’ inner product—‘correct’
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from the perspective of stability—for a given equation set. A penalty method implementation of the
boundary conditions that preserves asymptotic stability of the ROM with boundary treatment—so
as to ensure that the boundary condition terms appearing in the ROM do not destabilize the ROM—
may be derived as well also using the energy method. Efficiency of the ROM can be maintained via
the ‘best points’ interpolation method (BPIM) of Peraire, Nguyen et al. [21, 22].

The remainder of this paper is organized as follows. Section 2 describes the proposed non-linear
model reduction procedure. The POD/Galerkin approach for model reduction is overviewed in Sec-
tion 2.1. In Section 2.2, the inefficiency of the direct projection of the non-linear terms in building
a non-linear ROM for equations possessing strong non-linearities is exhibited. It is shown how effi-
ciency can be recovered by applying the so-called BPIM of [21, 22]. The penalty method approach
to enforcing boundary conditions is outlined in Section 2.3, and a procedure for studying asymptotic
stability of a Galerkin-projected system is described in Section 2.4. In Sections 3 and 4, efficient
ROMs are developed for the non-linear Allen-Cahn (or ‘bistable’) equation and a convection-
diffusion-reaction (CDR) model of a tubular reactor, respectively. For both problems considered,
a penalty implementation of the boundary conditions is formulated and proven to be asymptotically
stable for specific ranges of the penalty parameters. Numerical experiments illustrate that the pro-
posed POD ROMs developed perform well both without and with interpolation of the non-linear
terms: the penalty method is effective in enforcing boundary conditions of the Dirichlet, Neumann,
and Robin kind, and the ROMs are able to correctly capture the ‘metastability’ phenomenon exhib-
ited by the solution to the former equation and a stable limit cycle exhibited by the solution to the
latter system. It is emphasized that the model reduction approach proposed herein and illustrated on
these small-scale benchmarks is extendable to more challenging equations and larger scale problems
that arise in various industrial and engineering applications, for example, non-linear conservation
laws in the field of computational fluid dynamics [14]. Conclusions are offered in Section 5.

2. CONSTRUCTION AND ANALYSIS OF REDUCED ORDER MODELS FOR NON-LINEAR
PARTIAL DIFFERENTIAL EQUATIONS

2.1. Proper orthogonal decomposition/Galerkin approach for model reduction

This section contains a brief overview of the POD/Galerkin method for reducing the order of a
complex physical system governed by a general set of PDEs. The approach consists of two steps.

The first step is the calculation of a reduced basis using the POD of an ensemble of realiza-
tions from a high-fidelity simulation. Discussed in detail in Lumley [23] and Holmes et al. [4],
POD is a mathematical procedure that, given an ensemble (or snapshot set) of data, denoted by
¹uk.x/ W k D 1, : : : ,N º, constructs a basis for that ensemble that is optimal in the sense that
it describes more energy (on average) of the ensemble than any other linear basis of the same
dimension M . It is a well-known result [4, 12, 16, 24] that the solution to this optimization prob-
lem reduces to the eigenvalue problem R� D ��, where R � huk ˝ uki is a self-adjoint and
positive semi-definite operator. It can be shown [4, 23] that the set of M eigenfunctions, or POD
modes, ¹�i W i D 1, 2, : : : ,M º corresponding to the M largest eigenvalues of R is precisely the set
of ¹�iº that solves the aforementioned POD optimization problem. Given this basis, the numerical
ROM solution uM can be represented as a linear combination of POD modes

uM .x, t /D
MX
jD1

aj .t/�j .x/, (1)

where the aj .t/ are the so-called ROM coefficients to be solved for in the ROM.
The second step in constructing a ROM involves projecting the governing system of PDEs onto

the POD basis ¹�iº in some appropriate inner product, denoted generically (for now) by .�, �/. In
this step, the full-system dynamics are effectively translated to the implied dynamics of the POD
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modes. If the governing system of equations for the state variable vector u has the form

@u
@t
DL uCN2.u, u/CN3.u, u, u/, (2)

where L is a linear differential operator and N2 and N3 are (non-linear) quadratic and cubic
operators respectively, then the Galerkin projection of (2) onto the POD mode �j for j D
1, 2, : : : ,M is�

�j ,
@uM
@t

�
D
�
�j , L uM

�
C
�
�j , N2.uM , uM /

�
C
�
�j , N3.uM , uM , uM /

�
. (3)

Substituting the POD decomposition of uM (1) into (3) and applying the orthonormality property
of the basis functions �i in the inner product .�, �/ gives a set of time-dependent ordinary differential
equations (ODEs) in the modal amplitudes (also referred to as the ROM coefficients) that accurately
describes the flow dynamics of the full system of PDEs for some limited set of flow conditions:

daj
dt
� Paj D

MX
lD1

al.�j , L .�l//C

MX
lD1

MX
mD1

alam.�j , N2.�l ,�m// (4)

C

MX
lD1

MX
mD1

MX
nD1

alaman.�j , N3.�l ,�m,�n//,

for j D 1, 2, : : : ,M .
The approach described herein is based on a Galerkin projection of the continuous governing

partial differential equations, in common with the perspective of, for example, [12, 13, 15–17]. This
‘continuous projection’ approach differs from many POD/Galerkin applications, where the semi-
discrete representation of the governing equations is projected, and numerical analysis proceeds
from the perspective of a dynamical system of ODEs. The continuous projection approach has the
advantage that the ROM solution behavior can be examined using methods that have traditionally
been used for numerical analysis of spectral approximations to partial differential equations [18,19],
such as the techniques employed herein in studying stability. Because the stability analysis of the
ROM can be carried out a priori at the level of the continuous equations, the ROM can be con-
structed so that its stability is ensured a priori. Unlike in the discrete approach, however, in the
continuous approach, boundary condition terms present in the discretized equation set are not in
general inherited by the ROM and must therefore be implemented separately in the ROM (Section
2.3). It is emphasized that even though a ROM constructed using the discrete projection approach
has embedded in it the boundary conditions, many ROMs based on the discrete projection approach
are constructed without an a priori stability guarantee [25, 26]. These ROMs, although potentially
unstable, are nonetheless used in some applications because they can be easier to implement than
ROMs constructed using the continuous projection method [12, 25].

For the ROMs developed herein, the standardL2 inner product is selected for the Galerkin projec-
tion step of the model reduction procedure, as the Galerkin projection of the equations considered is
asymptotically stable in this inner product (Theorems 3.1.1 and 4.1.1)‡. In the implementation, the
continuous L2 inner product .�, �/ is approximated by a discrete L2 inner product:

.u, v/�
Z
�

uvd��
NX
kD0

u.xk/v.xk/, (5)

where x0, : : : , xN 2� are the spatial discretization points.

‡Note that for certain systems, for example, the compressible Euler and Navier–Stokes equations, another inner product
may be required to preserve stability of the Galerkin approximation compared with [12–15].
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2.2. ‘Best points’ interpolation of non-linear terms in the reduced order model

Consider the general non-linear IBVP

@u

@t
CL uCN .u/D f , (6)

where L is a linear operator, N is a non-linear operator, and f is some source depending on space
only (not a function of u). Assume without loss of generality that u is a scalar-valued function. Pro-
jecting (6) onto the j th POD (or any reduced basis) mode, denoted by �j for j D 1, : : : ,M , gives
rise to a system of ODEs of the form

PaM D F�LaM �N.aM /, (7)

where aTM � .a1, : : : aM / and

Lij �
�
L �j ,�i

�
, i , j D 1, : : : ,M , (8)

Fi � .f ,�i /, i D 1, : : : ,M , (9)

Ni .aM /�

 
N

 
MX
kD1

ak�k

!
,�i

!
, i D 1, : : : ,M . (10)

The inner products in (10) cannot be pre-computed prior to time integration of the ROM system
(7) if N contains a strong, for example, a non-polynomial non-linearity; rather, these inner products
would need to be recomputed at each time (or Newton) step of the ROM. This ‘direct’ treatment,
or computation, of these inner products can greatly reduce the efficiency of the ROM and motivates
the consideration of some alternative way to handle the non-linearity in (6).

To recover efficiency, the ‘best points’ interpolation of [21, 22], a technique based on a coeffi-
cient function approximation for the non-linear terms in (6), is employed. The general procedure is
outlined below.

Suppose K snapshots have been taken of the unknown field u at K different times (the first step
of the POD/Galerkin approach for model reduction outlined in Section 2.1):

S u � ¹�uk .x/D u
k
h.x/ W 16 k 6Kº. (11)

Given this set of snapshots of the primal unknown field u, the following set of snapshots of the
non-linear function N appearing in (6) is constructed:

S N � ¹�N
k .x/DN .ukh.x// W 16 k 6Kº. (12)

The best approximations of the elements in the snapshot set are now defined as follows:

N �
M .u

k
h.�//D arg min

wM2span¹�N
1

,:::,�N
M
º

jjN .ukh.�//�wM jj, 16 k 6K, (13)

where the set ¹�N
m º

M
mD1 is an orthonormal basis for N and jj � jj denotes the norm induced by

the inner product .�, �/ in which the POD basis is constructed (in this work, the standard L2 inner
product (5)). Orthonormality of the �N

m in this inner product implies that

N �
M .u

k
h.x//D

MX
mD1

˛km�
N
m .x/, 16 k 6K, (14)

where

˛km D .�
N
m , N .ukh.�///, mD 1, : : : ,M , 16 k 6K. (15)
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The ‘best’ interpolation points [21, 22], denoted by ¹xbpm ºMmD1, are defined as the solution to the
following optimization problem:

min
x
bp
1

,:::,xbp
M
2�

PK
kD1

ˇ̌̌ˇ̌̌
N �
M .u

k
h
.�//�

PM
mD1 ˇ

k
m.x

bp
1 , : : : , xbpM /�

N
m

ˇ̌̌ˇ̌̌2
,PM

nD1 �
N
n .x

bp
m /ˇ

k
n.x

bp
1 , : : : , xbpM /DN .uk

h
.x
bp
m //, 16m6M , 16 k 6K,

(16)

that is, the set of points ¹xbpm ºMmD1 is determined to minimize the average error between the inter-
polants NM .�/ and the best approximations N �

M .�/. Substituting (14) into (16) and invoking the
orthonormality of the ¹�N

m º
M
mD1, one can show that (16) is equivalent to

min
x
bp
1

,:::,xbp
M
2�

PK
kD1

PM
mD1.˛

k
m � ˇ

k
m.x

bp
1 , : : : , xbpM //

2,PM
nD1 �

N
n .x

bp
m /ˇ

k
n.x

bp
1 , : : : , xbpM /DN .uk

h
.x
bp
m //, 16m6M , 16 k 6K.

(17)

The solution to the least squares optimization problem (17) can be found using the Levenberg–
Marquardt algorithm and is typically reached in less than fifteen iterations of the algorithm [22].

Given the ‘best points’ for N , that is, the solutions to (17) (or any set of interpolation points),
denoted by ¹xN

m º
M
mD1, it is straightforward to apply the interpolation procedure outlined in [21, 22]

to the non-linear function N .u/ that appears in (6). The first step is to compute snapshots for the
non-linear function N in (6). From these snapshots, the interpolation points ¹xN

m º
M
mD1 are com-

puted following the approach outlined previously (and discussed in detail in Section 2 of [22]).
Given ¹xN

m º
M
mD1 and ¹�N

m º
M
mD1, the so-called ‘cardinal functions’, denoted by ¹ N

m º
M
mD1, are

computed by solving the following linear system§

�N
M .x/D A N

M .x/, (18)

where�N
M.x/D .�

N
1 .x/, : : : ,�N

M .x//T , N
M .x/D . 

N
1 .x/, : : : , N

M .x//T , andAij D �N
j .xN

i /,
with the cardinal functions satisfying  N

j .xi /D ıij .
Given the interpolation points ¹xN

m º and the cardinal functions ¹ N
m º, the non-linear function

N is approximated as

N .u/�NM .u/D

MX
mD1

N .u.xN
m // N

m 2R, (19)

so that

NM .u/D

MX
mD1

N

 
MX
nD1

an.t/�n.x
N
m /

!
 N
m , (20)

where ¹�mºMmD1 is an orthonormal basis for the primal unknown u computed from the snap-
shots (11).

The projection of NM .u/ (20) onto the l th POD mode for u can be written in matrix or vector
form. To do this, note that, for a general function NM .u/ and for l D 1, : : : ,M :

.�l , NM .u// D
�
�l ,
PM
mD1N

�PM
nD1 an.t/�n.x

N
m /

�
 N
m

�
D
PM
mD1

�R
� �l 

N
m d�

	
N
�PM

nD1 an.t/�n.x
N
m /

�
.

(21)

(21) is a matrix or vector product of the form GN N
�PM

nD1 an�n.x
N
m /

�
where

GN
nm D

Z
�

�n 
N
m d�, (22)

§Note that, for A to be invertible, the number of interpolation points must be equal to the number of reduced basis modes
M . A non-linear least squares optimization problem may be formulated if it is desired to have more interpolation points
than modesM , but this latter approach is not considered in the present work.
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for 16m,n6M (so that GN 2RM�M ).
It follows that, with the interpolation procedure described here, the ODE system for the ROM

coefficients is not (7) but rather

PaM D F�LaM �GN N .DN aM /, (23)

where F and L are defined in (9) and (8), respectively; the entries of the matrix GN are given by
(22) and

DN �

0
B@ �1.x

N
1 / : : : �M .x

N
1 /

...
. . .

...
�1.x

N
M / : : : �M .x

N
M /

1
CA 2RM�M . (24)

To clarify the notation in (23), namely what is meant by a function N of a vector:

N .DN aM /�N

0
B@
PM
mD1 am.t/�m.x

N
1 /

...PM
mD1 am.t/�m.x

N
M /

1
CA�

0
BBB@

N
�PM

mD1 am.t/�m.x
N
1 /

�
...

N
�PM

mD1 am.t/�m.x
N
M /

�
1
CCCA 2RM .

(25)

Once the ROM system (23) is constructed, the ROM is solved by advancing this system forward
in time using a standard time-integration scheme (e.g., Euler, Runge–Kutta), or a combination of a
time-integration scheme and Newton’s method, if the chosen time-integration scheme is implicit.

Essentially, in the BPIM, recomputation of inner products (projection) of the non-linear terms at
each time (or Newton) step is replaced by evaluation of the basis functions at the interpolation points.
These interpolation points are pre-computed and much fewer in number than N , the number of spa-
tial grid points. Hence, with interpolation, the cost of each step of the online time-integration stage
of the model reduction procedure is of O.M/—compared without O.N / for the model reduction
procedure without interpolation. Because M << N in practice, the savings gained in employing
the interpolation can be substantial, especially if the governing equation set possesses a strong (non-
polynomial) non-linearity N .u/. The computational complexity of the ‘best points’ interpolation
algorithm is discussed in detail in [21, 22].

2.3. Penalty enforcement of the boundary conditions in the reduced order model

In a POD ROM developed using the continuous projection approach [12,13,15], the boundary con-
dition terms present in the discretized equation set from which the POD basis is generated are not
inherited automatically by the ROM solution. The usual way to enforce boundary conditions in a
ROM constructed using the continuous projection approach is through a weak implementation, that
is, by applying them directly into the boundary integrals that arise when the operator L in (2) is
projected onto a mode and integrated by parts [12, 13, 15]. It has been argued that this weak imple-
mentation of the boundary conditions does not take into account the fact that the equation should
be obeyed arbitrarily close to the boundary. Indeed, numerical experiments demonstrate that a weak
implementation in which the boundary data are substituted direction into the boundary integrals
does not work well for some POD ROMs, particularly ROMs for equations with Robin boundary
conditions: the ROM solution may exhibit significant errors near the boundaries, error that can grow
in time and ultimately corrupt the solution in the entire domain.

An alternative to a weak enforcement of the boundary conditions is a penalty enforcement of
boundary conditions [18, 19, 27]. Formulating a boundary condition using the penalty method
amounts to rewriting a boundary value problem as follows:²

ut DL uCN uC f, in�
BuD h, on @�

! ut DL uCN uC f��.Bu� h/ı@�, (26)
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in � [ @�. Here, � is a diagonal matrix of penalty parameters selected such that stability is
preserved, and ı@� is an indicator function marking the boundary @�:

ı@� �

²
1, for x 2 @�
0, otherwise.

(27)

A useful technique for deriving the penalty parameters in � such that the Galerkin projection of
(26) remains stable is described in [19]. This technique, outlined in Section 2.4, is employed in the
analyses performed in Sections 3.1 and 4.1.

2.4. Stability analysis

For ROMs for general non-linear problems such as the ones considered herein, the question of
numerical stability can be a complicated one. This is because non-linear equations can support
(exhibit) stable as well as unstable, sometimes even chaotic, solutions. A ROM for a non-linear
equation or system of equations can only be expected to remain numerically stable in regions where
the exact solution to the equation(s) is in a stable state.

As illustrated in [19, 20], linear stability of a non-linear system can be examined for a large class
of operators if the solutions are smooth. For such problems, it is sufficient to consider the questions
of well-posedness and asymptotic stability for the locally linearized, constant coefficient version
of the full non-linear problem. The goal, then, in building a non-linear ROM, is to formulate the
discrete problem with boundary conditions such that the Galerkin projection of the equations can be
asymptotically stable in a way that is consistent with the asymptotic stability of the governing con-
tinuous equations. This is performed through the selection of an appropriate (stability-preserving)
inner product for the given equation set and the development of a stability-preserving implementa-
tion of the prescribed boundary conditions. Numerical stability of the ROM is studied via the energy
method. The key steps involved in using the energy method to build a ROM with an a priori stability
guarantee for any given equation set are summarized in the succeeding texts:

Step 1
Select an inner product .�, �/ to be used in building the ROM, with a corresponding norm jj � jj.

Step 2
Determine the stable steady states supported by the governing non-linear system, for example, (26).

Step 3
Linearize the spatial terms that appear in the equation set about a constant state u0 at which the
solution exhibits stable behavior, that is, linearize about a state u0 for which R¹�.J0/º< 0; where

J0 �
@.L CN /

@u

ˇ̌
uDu0 . (28)

Step 4
Ensure that the rate of change of the localized (frozen coefficient) and linearized system energy,
given by

1

2

d

dt
jjujj2 D .J0uC f, u/ , (29)

is non-positive (the system energy is non-increasing¶)—that is, ensure that the Galerkin projection
step of the model reduction without boundary treatment is stable in the chosen inner product.

Step 5
If an energy stability bound of the form (29) cannot be shown, return to Step 1 and select an
alternative inner product for the model reduction; otherwise, proceed to Step 6.

¶Non-increasing system energy is a sufficient condition for stability of the Galerkin scheme.
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Step 6
Derive the penalty parameters (the entries of �) such that the rate of change of the localized (frozen
coefficient) and linearized system energy with penalty-enforced boundary treatment, given by

1

2

d

dt
jjujj2 D .J0uC f, u/��

Z
@�

.Bu� h/ � udS , (30)

is non-positive (that is, the system energy remains non-increasing following the addition of boundary
condition terms).

In the analyses of Sections 3.1 and 4.1, the energy estimate (30) in Step 6 is recast into an algebraic
eigenvalue problem, following the procedure of [19].

3. A STABLE PROPER ORTHOGONAL DECOMPOSITION REDUCED ORDER MODEL
FOR THE ALLEN–CAHN (OR ‘BISTABLE’) EQUATION

The Allen–Cahn, or ‘bistable’, equation is an example of a semi-linear reaction–diffusion equation.
In .0,T ��RN , the equation has the form:

ut D "�uC f .u/, f .u/� u.1� u2/, (31)

where� is the usual Laplacian operator and " > 0 is a parameter, representing diffusivity. First pro-
posed by S. M. Allen and J. W. Cahn in the 1970s as a model for grain boundary motion in crystalline
solids [28], Allen–Cahn equations have become a prototype model for isothermal phase transitions.
These equations arise in the study of mechanisms of pattern formation for various phenomena, such
as phase transition, morphogenesis, population genetics, and chemical reactions.

In the present work, equation (31) in one spatial dimension (1D) is considered:8̂̂<
ˆ̂:

ut D "uxx C u.1� u
2/, x 2 .�1, 1/, t 2 .0,T �,

u.�1, t /D�1,u.1, t /D 1, t 2 .0,T �,

u.x, 0/D 0.53x � 0.47 sin
�
3
2
�x
�

, x 2 .�1, 1/

(32)

The initial condition and the solution to this IBVP are plotted in Figure 1. It is straightforward
to find the fixed points of (32), namely by setting f .u�/ D 0 and solving for u�. The equation has
three uniform fixed points:

u� D ¹�1, 0, 1º. (33)

Stability of these states can be studied by computing the Jacobian

J.u/�
@f

@u
D 1� 3u2, (34)

and checking its sign when evaluated at each of the steady states. This analysis leads to the con-
clusion that the middle state is unstable, but the states u� D ˙1 are attracting. The solutions to
equation (32) exhibit a phenomenon known as ‘metastability’, characterized by relative flatness of
the solution close to the stable states, separated by interfaces that may coalesce or vanish on a long
time scale [29] (Figure 1(b)).

3.1. Stability-preserving penalty formulation of boundary conditions for the Allen–Cahn Equation

In this section, a stability-preserving penalty enforcement of the boundary conditions for the Allen–
Cahn equation (32) is formulated. The first step is to rewrite (32) with a penalty method formulation
of the boundary conditions:²

ut D "uxx C u.1� u
2/� 	1Œu.�1, t /C 1�� 	2Œu.1, t /� 1�, x 2 .�1, 1/, t 2 .0,T �,

u.x, 0/D 0.53x � 0.47 sin
�
3
2
�x
�

, x 2 .�1, 1/,
(35)

Published 2012. This article is a US Government work and
is in the public domain in the USA.

Int. J. Numer. Meth. Engng (2012)
DOI: 10.1002/nme



I. KALASHNIKOVA AND M. F. BARONE

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

u(
x,

0)

(a) u(x,0)

−1
−0.5

0
0.5

1

0
20

40
60

80
−1.5

−1

−0.5

0

0.5

1

1.5

xt

(b) u(x,t)

Figure 1. Plots of initial condition (a) u.x, 0/ and solution to the Allen–Cahn initial boundary value problem
(32) (b) u.x, t /.

for some penalty parameters 	1, 	2 2 R, to be determined such that the Galerkin projection of
(35) in the L2 inner product is linearly stable (Theorem 3.1.1).

Theorem 3.1.1
Let u0 2 R be a stable steady state for the 1D Allen–Cahn equation (31) so that J.u0/ 6 0

(34). Then, the Galerkin projection of the IBVP (35) with a penalty enforcement of the boundary
conditions is asymptotically stable about u0 if

	1, 	2 > 1� 3u20„ ƒ‚ …
J.u0/

C
1

4
". (36)

Proof
The first step in the analysis is to linearize the function f .u/ in (31) about u0:

ut � "uxx C f .u0/C J.u0/.u� u0/D "uxx C .1� 3u
2
0/uC k, (37)

where k ��.1�3u0/u0 is a constant depending on u0. According to the definition of stability (see
Definition 2.11 in [30]), it is sufficient to consider the homogeneous version of (37) in studying sta-
bility. Therefore, the constant k is neglected from this point forward, and the homogeneous analogs
of the boundary conditions in (35) are considered. Then

1
2

d
dt jjujj

2 D " .uxx ,u/C .1� 3u20/.u,u/� 	1u2.�1, t /� 	2u2.1, t /

D �"jjuxjj
2C "u.1, t /ux.1, t /� "u.�1, t /ux.�1, t /

C.1� 3u20/jjujj
2 � 	1u

2.�1, t /� 	2u2.1, t /

6 �"u2x.1, t /� "u2x.�1, t /C "u.1, t /ux.1, t /� "u.�1, t /ux.�1, t /

C.1� 3u20/u
2.1, t /C .1� 3u20/u

2.�1, t /� 	1u2.�1, t /� 	2u2.1, t /

D .1� 3u20 � 	2/u
2.1, t /C "u.1, t /ux.1, t /� "u2x.1, t /C .1� 3u20 � 	1/u

2.�1, t /

�"u.�1, t /ux.�1, t /� "u2x.�1, t /

D uTRHRuR C uTLHLuL,
(38)

where

HR D
1

2

�
2� 6u20 � 2	2 "

" �2"

�
, HL D

1

2

�
2� 6u20 � 2	1 �"

�" �2"

�
, (39)
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and

uR �
�

u.1, t /
ux.1, t /

�
, uL �

�
u.�1, t /
ux.�1, t /

�
. (40)

In going from step 2 to step 3 of (38), the norm identity or inequality

� jjuxjj D �

NX
jD0

u2x.xj /D�u
2
x.�1, t /� u2x.1, t /�

N�1X
jD1

u2x.xj /6 �u2x.�1, t /� u2x.1, t /, (41)

has been employed (and similarly for jjujj), where xj 2 .�1, 1/ are the spatial discretization points
employed in the numerical scheme. The fact that, by assumption, J.u0/ D 1 � 3u20 6 0 (u0 is a
point at which the system is asymptotically stable), has been employed as well.

The eigenvalues of HR are

�˙.HR/D
1� 3u20 � 	2 � "˙

q
1� 6u20 � 2	2C 2"C 9u

4
0C 6u

2
0	2 � 6u

2
0"C 	

2
2 � 2	2"C 2"

2

2
.

(42)
Some algebra reveals that these eigenvalues are non-positive if

	2 > 1� 3u20C
1

4
". (43)

By inspection, the matrix HL in (39) has the same trace and determinant as the matrix HR. It
follows that the two matrices have the same eigenvalues. Thus, the condition on 	1 is the same as
the condition on 	2, namely (43).

�

To obtain an estimate of what values 	1 and 	2 to employ in practice, it is sensible for this exam-
ple to linearize J about one of the stable fixed points or steady states, namely u� D ˙1. For these
points,

J.˙1/D�2, (44)

so that (36) reduces to the bound

	1	2 > �2C
1

4
". (45)

3.2. Implementation of the Allen–Cahn reduced order model

The implementation of the Galerkin projection step of the model reduction procedure for the Allen–
Cahn IBVP with a penalty enforcement of the boundary conditions (35) is now outlined. Projecting
the first line of this IBVP onto the j th POD mode and invoking the orthonormality of the modes give
rise to the following system for the time-dependent ROM coefficient aj .t/ (following an integration
by parts on the diffusion term):

Paj D
XM

kD1
aj
�
�".�k,x ,�j ,x/C .�k ,�j /C "Œ�k,x.1/�j .1/� �k,x.�1/�j .�1/� (46)

�	1�k.�1/�j .�1/� 	2�k.1/�j .1/
	
� 	1�j .�1/C 	2�j .1/C

�
N .uM /,�j

�
,

for j D 1, ...,M , where

N .uM /��u
3
M , (47)

and uM �
PM
kD1 ak.t/�k.x/.
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Figure 2. N .u/ (47) (solid lines) and interpolation points (circles) for the Allen–Cahn equation (proper
orthogonal decomposition basis, M D 15).
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Figure 3. Proper orthogonal decomposition modes for the Allen–Cahn equation.

Figure 2 shows the computed ‘best points’ for a POD basis with M D 15 (shown in circles)
compared with the non-linear function N .u/ (47). Each curve plotted in this figure shows N .u/ at
a different time t .

3.3. Numerical results for the Allen–Cahn initial boundary value problem

A high-fidelity solution from which snapshots were taken to build the ROM was computed using a
Chebyshev collocation spectral method in space and a fourth-order Runge–Kutta scheme in time.
N D 101 spatial discretization points were used with �x D 0.02. The POD basis for the ROM was
computed from a total of K D 40 snapshots. Twenty of these were snapshots of the solution to (32)
with " D 0.02; the remaining twenty were snapshots of the solution to (32) with " D 0.005. For
each value of the diffusivity, the solution snapshots were saved every�tsnap D 1 time step until time
T D 20. Figure 3 shows the first four POD modes computed for this problem. It is evident that these
modes do not satisfy the Dirichlet boundary conditions at x D˙1.

In studying the performance of the proposed model reduction procedure, the predictive capabil-
ity of the ROM is of interest. To this effect, a ROM for (32) with " D 0.001 is constructed and
evaluated. Note that this value of the diffusivity differs from the values of the diffusivity selected
in building the reduced basis modes employed in the ROM. Results (ROM solutions versus high-
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Figure 4. Reduced order model (ROM) solutions to the Allen–Cahn equation with M D 15 proper orthog-
onal decomposition modes, "D 0.01, 	1 D 	2 D 100 (with interpolation). (a) t D 5; (b) t D 10; (c) t D 12;

and (d) t D 15.
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Figure 5. Time-average errors for the reduced order model solutions to the Allen–Cahn equation with
M D 15 proper orthogonal decomposition modes, " D 0.01, different 	 � 	1 D 	2. (a) Spatial errors

in � and (b) Spatial errors near x D�1 boundary.
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fidelity solutions at different times t ) for values of 	 � 	1 D 	2 selected within the stable range
derived in Theorem 3.1.1 are shown in Figure 4. For M > 10, the ROM solution with interpolation
looks indistinguishable from the ROM solution without interpolation. Figure 5 shows time-average
errors in the ROM solution relative to the CFD solution at each grid point xj 2 .�1, 1/ with 	
selected within the stable range (45). The time-average error is defined as

E �
1

T

X
tsnap6T

juROM.xj , tsnap/� uref.xj , tsnap/j, (48)

where the tsnap are the times at which the snapshots were taken, uROM is the ROM solution, and uref

is a high-fidelity reference solution, employed in the error analysis in place of the exact solution, as
the latter is unavailable analytically for this problem. The accuracy of the ROM with interpolation is
comparable to the accuracy of the ROM with a direct treatment of the non-linear term (47) at most of
the grid points. Figure 5 (b) shows a close up of the errors near the left boundary, x D�1. Although
the ROM remains stable for 	 D 0 (a value within the stability region (45)), it is evident from this
plot that the Dirichlet boundary condition at this boundary is being enforced with some error. This
situation improves by selecting a larger 	 . The time-average error (48) at the point x D�1 is plotted
as a function of 	 for 	 2 Œ0, 100� in Figure 6. The reader may observe by examining this figure the
convergence of the solution at the left boundary with increasing penalty parameter.

As expected, the ROM goes unstable if 	 is selected outside the stability range derived in
Theorem 3.1.1 (Figure 7). In this ROM, the non-linear term is handled directly. Therefore the
instability cannot be attributed to a poor set of interpolation points.

4. A STABLE PROPER ORTHOGONAL DECOMPOSITION REDUCED ORDER MODEL
FOR A TUBULAR REACTOR WITH OSCILLATORY REGIMES

In this section, a ROM for a non-linear system exhibiting more complex non-linear dynamics than
the Allen–Cahn equation considered in Section 3, namely oscillatory regimes, is developed. The
mathematical model is that of a one-dimensional (1D) non-adiabatic tubular reactor, represented by
a non-linear CDR system with a single A! B reaction [31]. In dimensionless form, the governing
equations, describing the conservation of reactantA and energy for the non-adiabatic tubular reactor
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Figure 6. Time-average errors for the reduced order model solutions to the Allen–Cahn equation with
M D 15 proper orthogonal decomposition modes, " D 0.01 at the left boundary x D �1 as a function

of 	 � 	1 D 	2.
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Figure 7. Reduced order model solutions to the Allen–Cahn equation with M D 15 proper orthogonal
decomposition modes, " D 0.01, 	1 D 	2 D �10 (no interpolation). (a) t D 5; (b) t D 10; (c) t D 12; and

(d) t D 15.

with mixing, are||

@y

@t
D

1

PeM

@2y

@x2
�
@y

@x
�D.y C 1/e

��
�C1 , x 2 .0, 1/, t 2 Œ0,T /,

@


@t
D

1

PeH

@2


@x2
�
@


@x
� ˇ.
 C 1� 
0/CBD.y C 1/e

�



 C 1 , x 2 .0, 1/, t 2 Œ0,T /,

(49)

for 
0 2R, PeM ,PeH > 0, subject to boundary conditions8̂̂̂
<
ˆ̂̂:
@y

@x
jxD0 D PeMyjxD0, t 2 .0,T �,

@


@x
jxD0 D PeH
 jxD0, t 2 .0,T �,

(50)

||Note that the equations (49)–(52) are exactly the equations considered in [31] but with the transformation y yC 1,
� � C 1.
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8̂̂̂
<
ˆ̂̂:
@y

@x
jxD1 D 0, t 2 .0,T �,

@


@t
jxD1 D 0, t 2 .0,T �,

(51)

and initial conditions

yjtD0 D yin, 
 jtD0 D 
in, x 2 .0, 1/. (52)

Here, y is the dimensionless concentration, 
 is the dimensionless temperature, x is the dimension-
less axial distance, t is the dimensionless time, ˇ is the dimensionless heat transfer coefficient, �
is the dimensionless activation energy, D is the Damköhler number, B is the dimensionless heat of
reaction, and PeM and PeH are the Péclet numbers for mass and heat transfer, respectively. The
boundary conditions enforced are of a mixed form: Neumann at the right boundary x D 1 (51) and
Robin at the left boundary x D 0 (50).

It is convenient to write (49)–(52) in vector form, as follows:8̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

@u
@t
D P

@2u
@x2
�
@u
@x
�B.uC e2 � u0/�CN .u/, x 2 .0, 1/, t 2 .0,T �,

P
@u
@x
jxD0 D ujxD0, t 2 .0,T �

@u
@x
jxD1 D 0, t 2 .0,T �,

u.x, 0/D uin, x 2 .0, 1/,

(53)

where, for y0 2R,

u�
�
y




�
, u0 �

�
y0

0

�
, uin �

�
yin

in

�
, (54)

P�
�
Pe�1M 0

0 Pe�1H

�
, B�

�
0 0

0 ˇ

�
, C�

�
D

�BD

�
, e2 �

�
0

1

�
, (55)

and

N .u/� .y C 1/e
��
�C1 2R. (56)

The fixed points of (49) are the zeros of the non-linear function (56). By inspection, it is
straightforward to see that .y�, 
�/D .�1, k/, for any k 2R is a family of fixed points.

Let

f.y, 
/�

 
�D.y C 1/e

��
�C1

�ˇ
 CBD.y C 1/e
��
�C1

!
D�Bu�CN .u/. (57)

The Jacobian of (57) is given by

J.u/�
@f
@u
D

 
�D �D�h.u/

BD �ˇCBD�h.u/

!
g.
/, (58)

where

h.u/�
y C 1

.
 C 1/2
, g.
/� e

��
�C1 . (59)

The eigenvalues of J.u/ are

�1,2 D
g.
/

2

�
BD�h.u/�D � ˇ

˙
p
D2 � 2Dˇ � 2D2�h.u/B C ˇ2 � 2ˇBD�h.u/CB2D2�2h2.u/

�
.

(60)
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It is apparent (because J.�1, k/ is lower triangular) that �¹J.�1, k/º D �De
�k
kC1 ,�ˇe

�k
kC1 , both

of which are necessarily negative, meaning .y�, 
�/D .�1, k/, for k 2R defines a region of stable
solutions.

As it turns out, the dynamics of the non-linear problem (49) are more complex than those of the
Allen–Cahn equation considered previously. These behaviors are studied using numerical bifurca-
tion techniques [31], which reveal periodic solutions possessing Hopf bifurcations and multiplicity
patterns exhibiting from one to seven steady states. The existence of stable oscillatory solutions as
a function of the Damköhler number D when PeM D PeH D 5,B D 0.50, � D 25,ˇ D 2.5, and

0 D 1 can be shown. In particular, there is a stable orbit that bifurcates into a limit cycle at the
lower Hopf point, D D 0.165 (Figure 13).

4.1. Stability-preserving penalty formulation of boundary conditions for the tubular
reactor problem

The penalty formulation of (49) with boundary conditions (50) and (51) is

@u
@t
D P

@2u
@x2
�
@u
@x
�B.uC e2 � u0/�CN .u/� 	1

�
ujxD0 � P

@u
@x
jxD0

�
� 	2

@u
@x
jxD1, (61)

for some penalty parameters 	1, 	2 2R (to be determined).
As with the Allen–Cahn equation, linear stability of the penalty formulation of the boundary

conditions for the CDR tubular reactor problem (61) is studied following a linearization of the non-
linear function that appears in this system. Suppose that f (57) has been linearized about some stable
state u0:

f.u/� f.u0/C J.u0/.u� u0/D J.u0/uC c, (62)

for some constant vector c 2R2 depending on u0. Introducing the shorthand J0 � J.u0/, it follows
that the linearized variant of (61), written in vector form is

ut D Puxx � ux C J0uC c� 	1 Œu.0, t /� Pux.0, t /�� 	2ux.1, t /, (63)

where P is given by (55).
An energy stability analysis applied to (63) gives bounds on the penalty parameters 	1 and 	2

such that the Galerkin projection of these equations in the L2 inner product is asymptotically stable
about a stable state u0 (Theorem 4.1.1).

Theorem 4.1.1
Let uT0 �

�
y0, 
0

�
2 R2 be a stable point for the CDR tubular reactor system (49) so that

R¹�.J.u0//º 6 0. Then, the Galerkin projection of the IBVP with a penalty enforcement of the
boundary conditions is asymptotically stable about u0 if

max
iD1,2

²
0, 2PeC 1�

q
4Pe2C 2Pe � 4Pe�i0

³

6 	1 6 min
iD1,2

²
2PeC 1C

q
4Pe2C 2Pe � 4Pe�i0

³
,

(64)

max
iD1,2

8̂<
:̂
1�

q
2Pe � 4Pe�i0

Pe

9>=
>;6 	2 6 min

iD1,2

8̂<
:̂
1C

q
2Pe � 4Pe�i0

Pe

9>=
>; , (65)

where �i0, i D 1, 2 are the eigenvalues of J0 � J.u0/ (58) and Pe Dmin¹PeM ,PeH º**.

**Note that the range for �2 (65) is necessarily defined as �i0 < 0 and Pe > 0.
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Proof
Let Pe �min¹PeM ,PeH º and assume PeM D PeH > 0, 	1 > 0. Then,

ut 6 Pe�1uxx � ux C J0uC c� 	1
�
u.0, t /�Pe�1ux.0, t /

	
� 	2ux.1, t /. (66)

The two equations in (66) are coupled by the Jacobian matrix J0. These equations can be decoupled
by diagonalizing J0:

J0 D S0ƒ0S�10 , (67)

where

ƒ0 �

�
�10 0

0 �20

�
(68)

is a diagonal matrix containing the eigenvalues of J0 and S0 is a matrix with columns spanned by
the normalized eigenvectors of J0. Let

v� S�10 u. (69)

In these variables, (66) becomes

vt 6 Pe�1vxx � vx Cƒ0vC S�10 c� 	1
�
v.0, t /�Pe�1vx.0, t /

	
� 	2vx.1, t / (70)

or, equivalently,´
v1,t 6 Pe�1v1,xx � v1,x C �

1
0v1 � 	1

�
v1.0, t /�Pe�1v1,x.0, t /

	
� 	2v1,x.1, t /,

v2,t 6 Pe�1v2,xx � v2,x C �
2
0v2 � 	1

�
v2.0, t /�Pe�1v2,x.0, t /

	
� 	2v2,x.1, t /,

(71)

where vT �
�
v1, v2

�
.

Each of the components in (71) is considered one at a time. Setting c D 0 and using the identity
.v1,x , v/� 1

2

R
�
.v2/xdx as well as (41),

1

2

d

dt
jjv1jj

2 6 Pe�1.v1,xx , v1/� .v1,x , v1/C �
1
0.v1, v1/� 	1.v1.0, t /

�Pe�1v1,x.0, t //v1.0, t /� 	2v1,x.1, t /v1.1, t /

D�Pe�1jjv1,xjj
2CPe�1v1,x.1, t /v.1, t /�Pe�1v1,x.0, t /v.0, t /�

1

2
v21.1, t /

C
1

2
v21.0, t /C �10jjv1jj

2 �	1v
2
1.0, t /C 	1Pe

�1v1,x.0, t /v1.0, t /� 	2v1,x.1, t /v1.1, t /

6�Pe�1v21,x.0, t /�Pe�1v21,x.1, t /CPe�1v1,x.1, t /v.1, t /�Pe�1v1,x.0, t /v1.0, t /

�
1

2
v21.1, t /C

1

2
v21.0, t /C �10v

2
1.0, t /C �10v

2
1.1, t /� 	1v

2
1.0, t /

C 	1Pe
�1v1,x.0, t /v1.0, t /� 	2v1,x.1, t /v1.1, t /

D

�
1

2
C �10 � 	1

�
v21.0, t /C

�
	1Pe

�1 �Pe�1
�
v1,x.0, t /v1.0, t /�Pe�1v21,x.0, t /

C

�
�
1

2
C �10

�
v21.1, t /C

�
Pe�1 � 	2

�
v1,x.1, t /v1.1, t /�Pe�1v21,x.1, t /

D vT1LH1Lv1LC vT1RH1Rv1R, (72)
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where

H1L �
1

2Pe

�
Pe.1C 2�10 � 2	1/ 	1 � 1

	1 � 1 �2

�
, H1R �

1

2Pe

�
Pe.�1C 2�10/ 1�Pe	2
1�Pe	2 �2

�
,

(73)
and

v1L �
�

v1.0, t /
v1,x.0, t /

�
, v1R �

�
v1.1, t /
v1,x.1, t /

�
. (74)

The eigenvalues of H1L are

�¹H1Lº D
1

2
�10C

1

4
�
1

2
	1 �

1

2Pe
˙

1

4Pe

p
�1L, (75)

where

�1L � 4Pe
2.�10/

2C 4Pe2�10 � 8Pe
2�10	1C 8Pe�

1
0CPe

2 � 4Pe2	1C 4PeC 4Pe
2	21

� 8Pe	1C 8� 8	1C 4	
2
1 . (76)

Some algebra reveals that these eigenvalues are non-positive if

2PeC 1�

q
4Pe2C 2Pe � 4Pe�10 6 	1 6 2PeC 1C

q
4Pe2C 2Pe � 4Pe�10. (77)

Similarly, the eigenvalues of H1R are

�¹H1Rº D
1

2
�10 �

1

4
�

1

2Pe
˙

1

4Pe

p
�1R, (78)

where

�1R � Pe
2 � 4�10Pe

2 � 4PeC 4Pe2.�10/
2C 8Pe�10C 8� 8	2PeC 4	

2
2Pe

2. (79)

It is straightforward to show that (78) is non-positive for

1�
q
2Pe � 4Pe�10

Pe
6 	2 6

1C
q
2Pe � 4Pe�10

Pe
. (80)

The equation for v2 is the same as the equation for v1 but with �10 replaced by �20. The stabil-
ity analysis, therefore, is the same as well. It follows that the bounds (64) and (65) on 	1 and 	2,
respectively, are sufficient conditions for ensuring asymptotic stability of the Galerkin projection of
the tubular reactor equations with a penalty enforcement of the boundary conditions (61). �

4.2. Implementation of the tubular reactor convection-diffusion-reaction reduced order model

A scalar POD basis is built for each of the unknowns, y and 
 :

y.x, t /� yM .x, t /D
MX
mD1

aym.t/�
y
m.x/, (81)


.x, t /� 
M .x, t /D
MX
mD1

a�m.t/�
�
m.x/. (82)

The POD modes �ym are constructed from snapshots of the concentration y only; the POD modes
��m are constructed from snapshots of the temperature 
 only. Note that one could, as an alternative,

construct a vector basis � 2 R2 from snapshots of the vector
�
y, 


�T
2 R2. Numerical exper-

iments reveal that employing scalar bases for each of the variables (81) and (82) yields a slightly
more accurate ROM for a fixed number of degrees of freedom for this problem.
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The ROM is constructed by projecting the y equation in (63) onto �yj and the 
 equation in (63)

onto ��j in the L2 inner product, for j D 1, : : : ,M . Projecting the concentration equation onto the
j th POD mode, the following expression is obtained, after performing an integration by parts on
the diffusion term and substituting the modal representation of the concentration,

Pa
y
j D�

XM

kD1
a
y

k

´
1

PeM

 
@�

y

k

@x
,
@�

y
j

@x

!

C

 
@�

y

k

@x
,�yj

!
C

1

PeM

"
@�

y

k

@x

ˇ̌̌
ˇ̌xD1�yj .1/� @�yk@x

ˇ̌̌
ˇ̌
xD0

�
y
j .0/

#

�	1

 
�
y

k
.0/�

1

PeM

@�
y

k

@x
jxD0

!
�
y
j .0/� 	2

@�
y

k

@x
jxD1�

y
j .1/

μ

�D
�
N .uM /,�

y
j

�
, (83)

where N .uM / is defined in (56). Similarly, for the temperature equation

Pa�j D�
XM

kD1
a�k

´
1

PeH

 
@��
k

@x
,
@��j

@x

!
C

 
@��
k

@x
,��j

!
C ˇ

�
��i ,��j

�

C
1

PeH

"
@��
k

@x

ˇ̌̌
ˇ̌xD1��j .1/� @��k

@x�

ˇ̌̌
ˇ̌
xD0

��j .0/

#

� 	1

 
��k .0/�

1

PeH

@��
k

@x
jxD0

!
��j .0/ �	2

@��
k

@x
jxD1�

�
j .1/

μ

C ˇ.1� 
0,��j /CBD
�
N .uM /,��j

�
. (84)

In total, there are 2M unknowns ¹ayj , a�j W j D 1, : : : ,M º. To estimate a desirable range of 	1 and
	2, a stable point .y0, 
0/ in the vicinity of the limit cycle is selected, and the result of Theorem 4.1.1
is applied (Section 4.3).
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Figure 8. N .u/ (56) (solid lines) and interpolation points (circles) for the tubular reactor convection-
diffusion-reaction system (proper orthogonal decomposition basis, M D 5).
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Both systems (83) and (84) contain the following non-linearity:

.N .uM /,�j /D

  
MX
mD1

aym.t/�
y
m.x/C 1

!
exp

´
�
PM
mD1 a

�
m.t/�

�
m.x/PM

mD1 a
�
m.t/�

�
m.x/C 1

μ
,�j

!
, (85)

which clearly cannot be pre-computed prior to time integration of the ROM and hence must be
recomputed at each time step of the time-integration scheme employed with the ‘direct’ treatment
of the non-linearity (85). This approach is extremely costly. However, the interpolation outlined in
Section 2.2 can be employed to recover efficiency of the ROM††. The interpolation points computed
for the scalar function N .u/ (56) with M D 5 are plotted in Figure 8 along with this non-linear
function shown for different times t .

4.3. Numerical results for the tubular reactor convection-diffusion-reaction system

The high-fidelity solution to the tubular reactor CDR system was obtained using a Fourier spectral
Galerkin method in space and a fourth order Runge–Kutta time-integration scheme. The domain
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Figure 9. Initial concentration and temperature profiles yin and 
in for the tubular reactor convection-
diffusion-reaction system.

Table I. Fluid properties used in the high-fidelity numerical
solution of (49)–(52) from which snapshots were taken.

Property Symbol Value

Péclet number for heat transfer PeH 5.00
Péclet number for mass transfer PeM 5.00
Dimensionless heat of reaction B 0.50
Dimensionless activation energy � 25.0
Dimensionless heat transfer coefficient ˇ 2.50
Damköhler number D 0.17
� 
0 1

††Note that the current model is a variant of the CDR tubular reactor model developed in [10] but is more efficient, as
the BPIM is employed to handle the highly non-linear term appearing in the equation. In [10], the terms involving the
projection (85) are treated directly.
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� D .0, 1/ was discretized by N D 101 spatial discretization points so that �x D 0.01. The ini-
tial conditions yin and 
in, plotted in Figure 9, were calculated using an implicit relation scheme
for the steady state solution. The values of the parameters for the solution from which the snap-
shots were taken are summarized in Table I. For a value of the Damkhöler number in the range
0.165 6 D 6 0.17, the solution is known to exhibit a stable limit cycle (Figure 13). A total of
100 snapshots were taken from this simulation for which D D 0.17. These snapshots were saved
every �tsnap D 0.25 up to time T D 25. From these snapshots, the POD modes to be used in the
ROM were computed. The first four POD modes for the concentration and temperature are plotted
in Figure 10.

In the first test performed, a POD ROM with five concentration and five temperature modes (so
that 2M D 10) and with D D 0.17 is evaluated. The ROM is run until time T D 100. Note that this
is a much longer time horizon than the time horizon used in the high-fidelity simulation from which
the POD basis was generated and well into the stable limit cycle regime (Figure 11). The objective
here is to test the predictive capability of the ROM for long time simulations. Figure 11 shows the
limit cycles in the concentration and temperature (the solutions y.1, t / and 
.1, t / as a function
of time) compared with the limit cycles produced by the high-fidelity simulation for two ROMs: an
ROM built using a ten mode (five concentration and five temperature modes) POD basis with a direct
treatment of the non-linear terms (plotted in blue), and an ROM built using a ten mode (five concen-
tration and five temperature modes) POD basis with interpolation of the non-linear terms (plotted
in red). The boundary conditions in both ROMs are imposed via the penalty formulation outlined
in Section 4.1 with 	1 D 	2 D 105. These values are within the stability range derived in Theorem
4.1.1 for a linearization point .y0, 
0/ with y0 � �1 and 
0 > 0.45, which is in the vicinity of the
stable limit cycle. Both ROMs capture the oscillatory behavior exhibited by the solution (the limit
cycle). The red and blue curves in Figure 11 are indistinguishable, which suggest that the amount of
error introduced into the approximation from the interpolation of the non-linear terms is not signif-
icant. This observation is confirmed by Figure 12, which shows the pointwise, time-average errors
(48) in the concentration y and temperature 
 relative to the high-fidelity solution as a function of
space with 	1 D 	2 D 105 and 2M D 10 (five concentration and five temperature) modes. The
error is maximal near the right boundary x D 1, where a Neumann boundary condition is imposed.
Figure 11 shows that the limit cycle behavior of the solution is nonetheless captured quite well by
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Figure 10. Concentration and temperature proper orthogonal decomposition modes for the tubular reactor
convection-diffusion-reaction system.
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Figure 11. Illustration of limit cycles (y and 
 at x D 1 as a function of time t) for different reduced
order models (ROM) for the tubular reactor convection-diffusion-reaction system with 2M D 10 (five con-
centration and five temperature) modes, 	1 D 	2 D 105 (without and with interpolation). POD, proper

orthogonal decomposition.
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Figure 12. Time-average errors (48) in the reduced order model solutions solution for the tubular reac-
tor convection-diffusion-reaction system with 2M D 10 (five concentration and five temperature) proper

orthogonal decomposition modes, 	1 D 	2 D 105.

the ROMs even at this point of maximal error. The ROM solution with interpolation is slightly less
accurate than the ROM solution computed via the direct approach but only by a very small mar-
gin. In the second test performed, the predictive capability of the ROM with respect to changes in
the Damkhöler number is assessed. It is of particular interest whether the ROM can reproduce the
bifurcation diagram for this problem. Using the same ten (five concentration and five temperature)
mode POD basis described previously, computed from snapshots taken up to time T D 25 and with
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Figure 13. Bifurcation diagram showing the existence of stable oscillatory solutions to the tubular reactor
convection-diffusion-reaction system when PeH D PeM D 5, B D 0.5, � D 25, ˇ D 2.5, 
0 D 1.

D D 0.17, solutions to (49) with the boundary conditions (50) and (51) are computed using the
ROM for different values ofD. Again, the ROMs are run for a longer time until T D 100. Figure 13
compares the bifurcation diagrams obtained for this problem using the high-fidelity model, the ROM
without interpolation, and the ROM with interpolation. The reader can observe that both ROMs pre-
dict correctly the existence of stable oscillatory solutions as a function of the Damkhöler number
and identify the lower Hopf bifurcation point D D 0.165. The error in the maximum temperature
computed by the ROM relative to the maximum temperature computed by the high-fidelity model is,
in general, less than 5% for each value of D. It is interesting to observe that a ROM computed from
the snapshots taken in an oscillatory regime can still capture well non-oscillatory solutions in the
steady regime. Plots of the ROM solutions for D ¤ 0.17 are not shown here for the sake of brevity.

5. CONCLUSIONS

A technique for building efficient POD/Galerkin ROMs for non-linear IBVPs whose solutions
exhibit inherently non-linear behaviors such as metastability and periodic regimes (limit cycles)
has been developed. Because the ROM is built by projecting the continuous governing equations
onto a set of basis modes rather than their discretized analogs, enforcement of the boundary condi-
tions by the ROM solution is not automatic. It is observed that the POD modes do not, in general,
satisfy the boundary conditions, particularly if the boundary conditions are of the inhomogeneous,
mixed and/or Robin kind. A formulation in which the boundary conditions are enforced weakly
via the penalty method is derived. To determine appropriate values of the penalty parameters, an
asymptotic stability analysis of the Galerkin scheme with penalty-enforced boundary conditions is
performed, following a linearization and localization of the equations about a stable steady state
similar to the technique employed in [19]. This analysis, borrowed from the spectral method com-
munity and performed at the level of the governing (continuous) equations, is made possible by
the fact that the continuous projection approach is employed in building the ROM. It is empha-
sized that the same a priori stability may not be guaranteed, in general, for a ROM constructed
using the discrete projection approach [25,26]. As stability is an essential mathematical property of
any discretization, including a ROM, and the continuous projection approach can guarantee these
results a priori, ROMs based on this proposed approach are recommended by the authors despite the
additional programming required in implementing such a ROM. Asymptotically stable ROMs with
stability-preserving penalty boundary treatment are developed for the Allen–Cahn (or ‘bistable’)
equation as well as a CDR system representing a tubular reactor. Efficiency of these non-linear
ROMs is maintained by using the BPIM to handle the projection of the non-linear terms that are
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present in these equations. The ROMs, both without as well as with interpolation, are stable and
capture the correct non-linear dynamics of the solutions, namely the phenomenon of metastability
for the Allen–Cahn equation and a stable limit cycle for the CDR system.

It is emphasized that the model reduction approach and stability analysis technique proposed
herein and illustrated specifically on the two model problems considered can be used to build stable,
efficient, and accurate ROMs for other non-linear equations in a plethora of applications, following
the approach outlined in Section 2.4. The reader is referred to [14] for a discussion of the application
of the approach to the compressible Navier–Stokes equations (and other conservation laws) and to
[12] for a discussion of a stability-preserving discrete implementation of a ROM constructed using
the continuous projection approach in two and three spatial dimensions.
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